| | |

Computer Organization and Architecture

Logic Gates

Circuits to Truth Tables

Circuits to Expressions

Expressions to Circuits

Finding SOP from K-Map

Finding POS from K-Map

Finding SOP from K-Map having Don't Care

Half Adders

Full Adders

Flip Flop

Integrated Circuits

Decoders

Multiplexers

Registers

Counters

RAM

ROM

Number Systems

Complements

Number Representations

Binary Addition and Subtraction

Gray Codes

Error Detection Codes

Register Transfer Language

Bus and Memory Transfers

Arithmetic Micro-operations

Logical Micro-operations

Shift Micro-operations

Basic Computer Organization

Timing and Control

Instruction Cycle

Instruction Types

Interrupt Cycle

Complete Computer Description

General Register Organization

Stack Organization

Evaluation of Arithmetic Operations

Address Modes

Instruction Formats

RISC and CISC Architectures

Parallel Processing

Multiplication Algorithms

Logic Gates

Circuits to Truth Tables

Circuits to Expressions

Expressions to Circuits

Finding SOP from K-Map

Finding POS from K-Map

Finding SOP from K-Map having Don't Care

Half Adders

Full Adders

Flip Flop

Integrated Circuits

Decoders

Multiplexers

Registers

Counters

RAM

ROM

Number Systems

Complements

Number Representations

Binary Addition and Subtraction

Gray Codes

Error Detection Codes

Register Transfer Language

Bus and Memory Transfers

Arithmetic Micro-operations

Logical Micro-operations

Shift Micro-operations

Basic Computer Organization

Timing and Control

Instruction Cycle

Instruction Types

Interrupt Cycle

Complete Computer Description

General Register Organization

Stack Organization

Evaluation of Arithmetic Operations

Address Modes

Instruction Formats

RISC and CISC Architectures

Parallel Processing

Multiplication Algorithms

A Full Adder is a digital circuit that not only produces a CARRY; it can even utilize that. Thus a Full adder can be better defined as a digital circuit that inputs three binary bits and adds them to produce a SUM and a CARRY. Among of the three input bits; first is the ADDEND, second is the AUGEND and third is the INPUT CARRY.

A Full Adder can be constructed by connecting two Half Adders serially. Consider the following Block Diagram:

Copyright 2018. All Rights Reserved.