| | |

Computer Organization and Architecture

Logic Gates

Circuits to Truth Tables

Circuits to Expressions

Expressions to Circuits

Finding SOP from K-Map

Finding POS from K-Map

Finding SOP from K-Map having Don't Care

Half Adders

Full Adders

Flip Flop

Integrated Circuits

Decoders

Multiplexers

Registers

Counters

RAM

ROM

Number Systems

Complements

Number Representations

Binary Addition and Subtraction

Gray Codes

Error Detection Codes

Register Transfer Language

Bus and Memory Transfers

Arithmetic Micro-operations

Logical Micro-operations

Shift Micro-operations

Basic Computer Organization

Timing and Control

Instruction Cycle

Instruction Types

Interrupt Cycle

Complete Computer Description

General Register Organization

Stack Organization

Evaluation of Arithmetic Operations

Address Modes

Instruction Formats

RISC and CISC Architectures

Parallel Processing

Multiplication Algorithms

Logic Gates

Circuits to Truth Tables

Circuits to Expressions

Expressions to Circuits

Finding SOP from K-Map

Finding POS from K-Map

Finding SOP from K-Map having Don't Care

Half Adders

Full Adders

Flip Flop

Integrated Circuits

Decoders

Multiplexers

Registers

Counters

RAM

ROM

Number Systems

Complements

Number Representations

Binary Addition and Subtraction

Gray Codes

Error Detection Codes

Register Transfer Language

Bus and Memory Transfers

Arithmetic Micro-operations

Logical Micro-operations

Shift Micro-operations

Basic Computer Organization

Timing and Control

Instruction Cycle

Instruction Types

Interrupt Cycle

Complete Computer Description

General Register Organization

Stack Organization

Evaluation of Arithmetic Operations

Address Modes

Instruction Formats

RISC and CISC Architectures

Parallel Processing

Multiplication Algorithms

The half adder is a digital circuit that adds two binary digits called as AUGEND & ADDEND and produces two outputs as SUM & CARRY. XOR gate is applied to both inputs to produce SUM and AND gate is applied to both inputs to produce CARRY.

Here, it must be kept in mind that a Half Adder adds only two single digit binary numbers. Thus we can get a total of four different addition operations which are:

From this table, it is clear that the CARRY is not involved in further addition process, if it is so, well have to use two serially connected Half Adders or legally speaking, well have to use a Full Adder.

Copyright 2018. All Rights Reserved.